293 research outputs found

    "i have a feeling trump will win..................": Forecasting Winners and Losers from User Predictions on Twitter

    Full text link
    Social media users often make explicit predictions about upcoming events. Such statements vary in the degree of certainty the author expresses toward the outcome:"Leonardo DiCaprio will win Best Actor" vs. "Leonardo DiCaprio may win" or "No way Leonardo wins!". Can popular beliefs on social media predict who will win? To answer this question, we build a corpus of tweets annotated for veridicality on which we train a log-linear classifier that detects positive veridicality with high precision. We then forecast uncertain outcomes using the wisdom of crowds, by aggregating users' explicit predictions. Our method for forecasting winners is fully automated, relying only on a set of contenders as input. It requires no training data of past outcomes and outperforms sentiment and tweet volume baselines on a broad range of contest prediction tasks. We further demonstrate how our approach can be used to measure the reliability of individual accounts' predictions and retrospectively identify surprise outcomes.Comment: Accepted at EMNLP 2017 (long paper

    An Annotated Corpus for Machine Reading of Instructions in Wet Lab Protocols

    Full text link
    We describe an effort to annotate a corpus of natural language instructions consisting of 622 wet lab protocols to facilitate automatic or semi-automatic conversion of protocols into a machine-readable format and benefit biological research. Experimental results demonstrate the utility of our corpus for developing machine learning approaches to shallow semantic parsing of instructional texts. We make our annotated Wet Lab Protocol Corpus available to the research community

    Adversarial Learning for Neural Dialogue Generation

    Full text link
    In this paper, drawing intuition from the Turing test, we propose using adversarial training for open-domain dialogue generation: the system is trained to produce sequences that are indistinguishable from human-generated dialogue utterances. We cast the task as a reinforcement learning (RL) problem where we jointly train two systems, a generative model to produce response sequences, and a discriminator---analagous to the human evaluator in the Turing test--- to distinguish between the human-generated dialogues and the machine-generated ones. The outputs from the discriminator are then used as rewards for the generative model, pushing the system to generate dialogues that mostly resemble human dialogues. In addition to adversarial training we describe a model for adversarial {\em evaluation} that uses success in fooling an adversary as a dialogue evaluation metric, while avoiding a number of potential pitfalls. Experimental results on several metrics, including adversarial evaluation, demonstrate that the adversarially-trained system generates higher-quality responses than previous baselines

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues

    Are Large Language Models Robust Coreference Resolvers?

    Full text link
    Recent work on extending coreference resolution across domains and languages relies on annotated data in both the target domain and language. At the same time, pre-trained large language models (LMs) have been reported to exhibit strong zero- and few-shot learning abilities across a wide range of NLP tasks. However, prior work mostly studied this ability using artificial sentence-level datasets such as the Winograd Schema Challenge. In this paper, we assess the feasibility of prompt-based coreference resolution by evaluating instruction-tuned language models on difficult, linguistically-complex coreference benchmarks (e.g., CoNLL-2012). We show that prompting for coreference can outperform current unsupervised coreference systems, although this approach appears to be reliant on high-quality mention detectors. Further investigations reveal that instruction-tuned LMs generalize surprisingly well across domains, languages, and time periods; yet continued fine-tuning of neural models should still be preferred if small amounts of annotated examples are available
    • …
    corecore